Grazer exclusion alters plant spatial organization at multiple scales, increasing diversity
نویسندگان
چکیده
Grazing is one of the most important factors influencing community structure and productivity in natural grasslands. Understanding why and how grazing pressure changes species diversity is essential for the preservation and restoration of biodiversity in grasslands. We use heavily grazed subalpine meadows in the Qinghai-Tibetan Plateau to test the hypothesis that grazer exclusion alters plant diversity by changing inter- and intraspecific species distributions. Using recently developed spatial analyses combined with detailed ramet mapping of entire plant communities (91 species), we show striking differences between grazed and fenced areas that emerged at scales of just one meter. Species richness was similar at very small scales (0.0625 m(2)), but at larger scales diversity in grazed areas fell below 75% of corresponding fenced areas. These differences were explained by differences in spatial distributions; intra- and interspecific associations changed from aggregated at small scales to overdispersed in the fenced plots, but were consistently aggregated in the grazed ones. We conclude that grazing enhanced inter- and intraspecific aggregations and maintained high diversity at small scales, but caused decreased turnover in species at larger scales, resulting in lower species richness. Our study provides strong support to the theoretical prediction that inter- and intraspecific aggregation produces local spatial patterns that scale-up to affect species diversity in a community. It also demonstrates that the impacts of grazing can manifest through this mechanism, lowering diversity by reducing spatial turnover in species. Finally, it highlights the ecological and physiological plant processes that are likely responding to grazing and thereby altering aggregation patterns, providing new insights for monitoring, and mediating the impacts of grazing.
منابع مشابه
Plant diversity partitioning in grazed Mediterranean grassland at multiple spatial and temporal scales
1. Grazing by large ungulates may affect plant species richness and diversity at multiple spatial and ⁄or temporal scales, because grazing affects small-scale resource heterogeneity and plant interactions at the local scale, while effects at the landscape scale are related to grazing intensity and timing. 2. We used diversity partitioning to analyse longand short-term effects of cattle grazing ...
متن کاملProductivity alters the scale dependence of the diversity-invasibility relationship.
At small scales, areas with high native diversity are often resistant to invasion, while at large scales, areas with more native species harbor more exotic species, suggesting that different processes control the relationship between native and exotic species diversity at different spatial scales. Although the small-scale negative relationship between native and exotic diversity has a satisfact...
متن کاملGenotypic diversity and grazer identity interactively influence seagrass and grazer biomass
Despite experimental evidence for effects of primary producer diversity and consumer species diversity on population and community processes, little is known about how diversity at these multiple trophic levels may interact. We conducted a mesocosm experiment to examine the independent and interactive effects of seagrass Zostera marina genotypic diversity and grazer species diversity on seagras...
متن کاملHierarchical drivers of reef-fish metacommunity structure.
Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales...
متن کاملPatterns of diversity in marine phytoplankton.
Spatial diversity gradients are a pervasive feature of life on Earth. We examined a global ocean circulation, biogeochemistry, and ecosystem model that indicated a decrease in phytoplankton diversity with increasing latitude, consistent with observations of many marine and terrestrial taxa. In the modeled subpolar oceans, seasonal variability of the environment led to competitive exclusion of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013